forum.rastrnet.ru  

Вернуться   forum.rastrnet.ru > Культура, Развлечения, Хобби > Наука, религия, философия

 Сообщения за день       Добавить альбом       Поиск      Правила форума  


Ответ
 
Опции темы Опции просмотра
Старый 22.08.2007, 19:55   #1
Ctacbes
КсеноИнквизиция
 
Аватар для Ctacbes
 
Регистрация: 01.09.2005
Сообщений: 5,004
По умолчанию Освоение луны и Гелий 3

Мож тема была, но мой поиск нечего мне не дал.
Что вы думаете о осваение луны? Нужно ли России это? И как вы смотрете не перспективность гелия 3 как топлива? Для тех кто не в курсе попытался кое что, кратко, вставить. Инфа из разных источников, за достоверность отвечать не могу.

Кратко о достоинствах гелия 3 (подробнее в посту ниже):
Предположительно запасы гелия 3 на луне оцениваются от одного до 500 миллионов тонн, но даже одного мелиона тонн России хватит на долго. Одна тонна этого изотопа даст столько же энергии, как 14 миллионов тонн нефти причём десяти тонн гелия-3 хватит на то, чтобы удовлетворить годовую потребность России в энергии.
При добыче гелия-3 из реголита извлекаются также многочисленные сопутствующие вещества (водород, вода, азот, углекислый газ, азот, метан, угарный газ), которые могут быть полезны для поддержания лунного промышленного комплекса. Вот инфа с виккипедии о составе лунной коры:
Состав лунной коры
Кислород 43%
Кремний 21%
алюминий 10%
кальций 9%
Железо 9%
Магний 5%
титан 2%
никель 0,6%
натрий 0,3%
хром 0,2%
калий 0,1%
Марганец 0,1%
сера 0,1%
фосфор 500 ppm (миллионных частей, 1 ppm = 0,0001 %)
углерод 100 ppm
азот 100 ppm
водород 50 ppm
гелий 20 ppm
http://ru.wikipedia.org/wiki/Луна
На что можно опереться при создании лунной базы и лунной промышленности.
В первую очередь - на спутные газы.
На 1 кг добытого гелия-3 приходится:
6000 кг H2
3000 кг Н2О
3000 кг He4
2000 кг СО2
2000 кг СО
2000 кг СН4
500 кг N2
Кроме того, на Луне в больших количествах присутствует минерал ильменит, состоящий из оксидов железа и титана. Из ильменита можно получить кислород либо путём нагрева до температур выше 700 С, либо электролизом (при этом на одном электроде выделяется кислород, на другом - чистое железо).
Из реголита также можно производить цемент. Таким образом, на Луне есть всё для изготовления бетона.
Растения на реголите неплохо растут - есть основа для лунного с/х.
Не исключено наличие льда в приполярных кратерах.
Это всё значительно облегчит жизнь базы, научного комплекса и промышленного комплекса «рудокопов». )
Плюс можно поставить термоядерный реактор который будет снабжать станцию на месте и обеспечивать необходимыми запасами энергии. )

Процесс получения гелия 3 довольно осуществим:
Специальные “комбайны” должны собирать реголит с поверхностного слоя толщиною около двух метро и доставлять его на пункты переработки. При нагреве до 600 С десорбируется 75% содержащегося в реголите гелия, при нагреве до 800 С - почти весь гелий. Нагрев пыли предлагается вести, фокусируя солнечный свет либо пластмассовыми линзами, либо зеркалами. Возможно использование нагревательных печей. Разделение гелия 4 от гелия 3 можно вести используя разницу температур ожижения и сверх текучесть гелия при температуре ниже 2,1 К, для большей экономии энергии, проводить в ночное время суток, когда на луне и без того холодно.

Но:
Но ещё нет реактора, который мог бы выдержать температуры и не прийти в неисправность. Учёные заверяют, что ядерные реакторы на гелии-3 могут быть созданы уже в ближайшем времени, те же учённые заверяют что он может быть создан только лет через 40-50, встаёт вопрос, есть ли смысл добывать топливо, которое мы не можем использовать, но с другой стороны, есть ли проблема будет решена, то придется ждать ещё 15 лет пока только сможем запустить добычу топлива, да и я верю в наших учёных, либо уже изобрели и держат в секрете, либо просто я плохо проинформирован и он уже давно изобретён.

Планы по освоению луны:
Спикер Государственной думы РФ Борис Грызлов на встрече с коллективом Центра подготовки космонавтов имени Юрия Гагарина заявил, что отечественная программа изучения и освоения Луны может занять важное место в этих стратегических проектах. Бывший руководитель Центра имени Гагарина Владимир Шаталов отметил необходимость серьёзной поддержки реализации российской программы освоения Луны, сообщает РИА "Новости".
В настоящее время Россией в 2012 году запланирован запуск к Луне искусственного спутника. Помимо РФ свои спутники для изучения естественного спутника Земли готовят к запуску Великобритания, Индия, Китай, Японии и США, которая обнародовала в декабре 2006 года свою глобальную программу освоения Луны.
Глава РКК "Энергия" Николай Севастьянов на заседании "круглого стола" в Совете Федерации заявил, что Россия планирует затратить на программу полета к Луне около 2 миллиардов долларов. Благодаря использованию серийных ракет это, по его мнению, удастся осуществить за 3 полета. При этом он отметил, что в космическом бюджете США на эти нужды выделяется 11 миллиардов долларов.
Насколько я знаю к 2015 мы хотели осуществить первую высадку человека на луну, а к 2025 организовать промышленную добычу гелия 3. Надеюсь, у нас всё получится. Ведь обещают орбитальную станцию, на орбите луны, которая будет так же служить отправным пунктом на осваивание солнечной системы.
__________________
The history of Russia is one of glory, and victory, and of sadness.
Ctacbes вне форума   Ответить с цитированием
Старый 22.08.2007, 19:57   #2
Ctacbes
КсеноИнквизиция
 
Аватар для Ctacbes
 
Регистрация: 01.09.2005
Сообщений: 5,004
По умолчанию

Гелий 3.

Луна и грош, или история гелиевой энергетики
С легкой руки американского президента в конце 2003 года в повестку дня встал вопрос о новых целях человечества в космосе. Высказанная среди прочих предложений задача создания обитаемой станции на Луне отчасти основывается на заманчивой идее использовать уникальные лунные запасы гелия-3 для получения энергии на Земле. Пригодится лунный гелий или нет, покажет будущее, но рассказ о нем достаточно увлекателен и позволяет сравнить наши знания о строении атомного ядра и Солнечной системы с практическими аспектами энергетики и горного дела.
ЗАЧЕМ? ИЛИ ЯДЕРНЫЙ СИНТЕЗ - АЛХИМИЯ НАЯВУ

Превратить свинец в золото было мечтой средневековых алхимиков. Как всегда, природа оказалась богаче человеческих фантазий. Реакции ядерного синтеза создали все разнообразие химических элементов, заложив материальные основы нашего мира. Однако синтез может дать и нечто гораздо более ценное, чем золото, - энергию. Ядерные реакции в этом смысле подобны химическим (то есть реакциям преобразования молекул): каждое составное вещество, будь то молекула или атомное ядро, характеризуется энергией связи, которую необходимо потратить, чтобы разрушить соединение, и которая высвобождается при его образовании. Когда энергия связи продуктов реакции выше, чем исходных материалов, - реакция идет с выделением энергии, и, если научиться ее забирать в том или ином виде, исходные вещества можно использовать как топливо. Из химических процессов наиболее эффективна в этом смысле, как известно, реакция взаимодействия с кислородом - горение, которая сегодня служит основным и незаменимым источником энергии на электростанциях, на транспорте и в быту (еще больше энергии выделяется в ходе реакции фтора, особенно молекулярного, с водородом; однако и сам фтор, и фтористый водород - вещества чрезвычайно агрессивные).

Энергия связи протонов и нейтронов в ядре значительно больше, чем та, что связывает атомы в молекулы, и ее можно в прямом смысле слова взвесить, пользуясь великой формулой Эйнштейна E = mc2: масса атомного ядра заметно меньше масс отдельных протонов и нейтронов, его составляющих. Поэтому тонна ядерного топлива заменяет многие миллионы тонн нефти. Однако синтез не зря называется термоядерным: чтобы преодолеть электростатическое отталкивание при сближении двух положительно заряженных атомных ядер, нужно как следует разогнать их, то есть нагреть ядерное топливо до сотен миллионов градусов (вспомним, что температура есть мера кинетической энергии частиц). По сути, при таких температурах мы имеем дело уже не с газами или жидкостями, а с четвертым состоянием вещества - плазмой, в которой нет нейтральных атомов, а есть только электроны и ионы.

В природе подобные условия, подходящие для синтеза, существуют лишь в недрах звезд. Солнце своей энергией обязано так называемому гелиевому циклу реакций: синтезу ядра гелия-4 из протонов. В звездах-гигантах и при взрывах сверхновых рождаются и более тяжелые элементы, формируя, таким образом, все разнообразие элементов во Вселенной. (Правда, считается, что часть гелия могла образоваться и непосредственно при рождении Вселенной, во время Большого взрыва.) Солнце в этом смысле не самый эффективный генератор, потому что оно горит долго и медленно: процесс тормозит первая и самая медленная реакция синтеза дейтерия из двух протонов. Все следующие реакции идут гораздо быстрее и немедленно пожирают доступный дейтерий, в несколько этапов перерабатывая его в ядра гелия. В результате, даже если предположить, что в синтезе участвует только одна сотая солнечного вещества, находящаяся в его ядре, энерговыделение составляет всего лишь 0,02 ватта на килограмм. Впрочем, именно этой медлительности, объясняемой в первую очередь небольшой, по звездным меркам, массой светила (Солнце относится к категории субкарликов) и обеспечивающей постоянство потока солнечной энергии на многие миллиарды лет, мы обязаны самим существованием жизни на Земле. В звездах-гигантах преобразование материи в энергию идет значительно быстрее, но в результате они сжигают себя полностью за десятки миллионов лет, не успев даже толком обзавестись планетными системами.

Задумав провести термоядерный синтез в лаборатории, человек собирается таким образом перехитрить природу, создав более эффективный и компактный генератор энергии, чем Солнце. Однако мы можем выбрать гораздо более легко осуществимую реакцию - синтез гелия из дейтерий-тритиевой смеси. Планируется, что проектируемый международный термоядерный реактор - токамак "ИТЕР" сможет достичь порога зажигания, от чего, впрочем, еще очень и очень далеко до коммерческого использования термоядерной энергии (см. "Наука и жизнь" №№ 8, 9, 2001 г.). Основная проблема, как известно, состоит в том, чтобы удержать плазму, нагретую до нужной температуры. Так как никакая стенка при такой температуре не избежит разрушения, то удерживать плазменное облако пытаются магнитным полем. В водородной бомбе задача решается взрывом небольшого атомного заряда, сжимающего и нагревающего смесь до необходимой кондиции, но для мирного получения энергии этот способ мало подходит. (О перспективах так называемой взрывной энергетики см. "Наука и жизнь" № 7, 2002 г.)

Главный недостаток дейтерий-тритиевой реакции - высокая радиоактивность трития, период полураспада которого составляет всего 12,5 лет. Это самая радиационно-грязная из доступных реакций, причем настолько, что в промышленном реакторе внутренние стенки камеры сгорания необходимо будет менять через каждые несколько лет из-за радиационного разрушения материала. Правда, наиболее вредные радиоактивные отходы, требующие бессрочного захоронения глубоко под землей из-за большого времени распада, при синтезе не образуются совсем. Другая проблема заключается в том, что выделяемую энергию уносят в основном нейтроны. Эти не имеющие электрического заряда частицы не замечают электромагнитного поля и вообще плохо взаимодействуют с веществом, так что отобрать у них энергию непросто.

Реакции синтеза без трития, например с участием дейтерия и гелия-3, практически радиационно безопасны, так как в них используются только стабильные ядра и не производятся неудобные нейтроны. Однако, чтобы "зажечь" такую реакцию, нужно, компенсируя более низкую скорость синтеза, нагреть плазму в десять раз сильнее - до миллиарда градусов (одновременно решив задачу ее удержания)! Поэтому сегодня подобные варианты рассматривают как основу будущих термоядерных реакторов второго, следующего за дейтерий-тритиевым, поколения. Однако идея этой альтернативной термоядерной энергетики приобрела и неожиданных союзников. Сторонники колонизации космоса считают гелий-3 одной из основных экономических целей лунной экспансии, которая должна обеспечить потребности человечества в чистой термоядерной энергии.
ГДЕ? ИЛИ СОЛНЕЧНЫЙ ГОСТЬ

На первый взгляд проблем с тем, где взять гелий, быть не должно: он второй по распространенности во Вселенной элемент, а относительное содержание в нем легкого изотопа составляет немногим меньше одной тысячной доли. Однако для Земли гелий - экзотика. Это очень летучий газ. Земля не может удержать его своим тяготением, и почти весь первичный гелий, попавший на нее из протопланетного облака при образовании Солнечной системы, вернулся из атмосферы обратно в космос. Даже обнаружен гелий был сначала на Солнце, почему и получил название в честь древнегреческого бога Гелиоса. Позже его нашли в минералах, содержащих радиоактивные элементы, и, наконец, выловили в атмосфере среди других благородных газов. Земной гелий имеет в основном не космическое, а вторичное, радиационное, происхождение: при распаде радиоактивных химических элементов вылетают альфа-частицы - ядра гелия-4. Гелий-3 так не образуется, и поэтому его количество на Земле ничтожно и исчисляется буквально килограммами.

Запастись гелием космического происхождения (с относительно большим содержанием гелия-3) можно в атмосферах Урана или Нептуна - планет достаточно больших, чтобы удержать этот легкий газ, или на Солнце. Оказалось, что к солнечному гелию подобраться проще: все межпланетное пространство заполнено солнечным ветром, в котором на 70 тысяч протонов приходится 3000 альфа-частиц - ядер гелия-4 и одно ядро гелия-3. Ветер этот чрезвычайно разрежен, по земным меркам он представляет собой самый настоящий вакуум, и "сачком" его поймать невозможно (см. Наука и жизнь" № 7, 2001 г.). Зато солнечная плазма оседает на поверхности небесных тел, не имеющих магнитосферы и атмосферы, например на Луне, и, значит, можно опустошить какую-нибудь природную ловушку, исправно пополнявшуюся последние четыре миллиарда лет. В результате плазменной бомбардировки на Луну за это время выпало несколько сотен миллионов тонн гелия-3. Если бы весь солнечный ветер оставался на поверхности Луны, то кроме 5 граммов гелия-3 на каждом квадратном метре поверхности оказалось бы в среднем еще 100 килограммов водорода и 16 - гелия-4. Из этого количества можно было бы создать вполне приличную атмосферу, лишь немногим более разреженную, чем марсианская, или океан жидкого газа двухметровой глубины!

Однако ничего подобного на Луне нет, и лишь очень малая доля ионов солнечного ветра навсегда остается в верхнем слое лунного грунта - реголите. Исследования лунного грунта, привезенного на Землю советскими станциями "Луна" и американскими "Аполлонами", показали, что гелия-3 в нем примерно 1/100-миллионная часть, или 0,01 грамма на 1 тонну. А всего на Луне около миллиона тонн этого изотопа, по земным меркам очень много. При современном уровне мирового энергопотребления лунного топлива хватило бы на 10 тысяч лет, что примерно в десять раз больше, чем энергетический потенциал всего извлекаемого химического топлива (газа, нефти, угля) на Земле.
КАК? ИЛИ "В ГРАММ ДОБЫЧА, В ГОД ТРУДЫ"

К сожалению, никаких "озер" гелия на Луне нет, он более или менее равномерно рассеян по всему приповерхностному слою. Тем не менее с технической точки зрения процесс добычи довольно прост и в подробностях разработан энтузиастами колонизации Луны (см., например, www.asi.org).

Чтобы обеспечить современную годовую потребность Земли в энергии, необходимо завезти с Луны всего лишь около 100 тонн гелия-3. Именно это количество, соответствующее трем-четырем рейсам космических челноков - шаттлов, и завораживает своей доступностью. Однако сначала надо перекопать около миллиарда тонн лунного грунта - не такое уж большое количество по меркам горной промышленности: например, угля за год в мире добывают два миллиарда тонн (в России - около 300 миллионов тонн). Конечно, содержание гелия-3 в породе не слишком велико: например, разработка месторождений считается экономически эффективной, если золота в них содержится не менее нескольких граммов, а алмазов - не менее двух каратов (0,4 г) на тонну. В этом смысле гелий-3 можно сравнить разве что с радием, которого с начала ХХ века было получено всего лишь несколько килограммов: после обработки тонны чистого урана получается только 0,4 грамма радия, не говоря уже о проблемах добычи самого урана. В начале прошлого века, в период романтического отношения к радиоактивности, радий был довольно популярен и известен не только физикам, но и лирикам: вспомним фразу В. В. Маяковского: "Поэзия - та же добыча радия. В грамм добыча, в год труды". Зато гелий-3 дороже практически любого вещества, используемого человеком, - одна тонна стоила бы как минимум миллиард долларов, если пересчитать энергетический потенциал гелия в нефтяной эквивалент по бросовой цене 7 долларов за баррель.

Газ легко выделяется из реголита, нагретого до нескольких сотен градусов, скажем, при помощи зеркала-концентратора солнечных лучей. Не забудем, что еще надо отделить гелий-3 от гораздо большего количества других газов, в основном от гелия-4. Это делают, охлаждая газы до жидкого состояния и пользуясь незначительной разницей температур кипения изотопов (4,22 К для гелия-4 или 3,19 К для гелия-3). Другой изящный способ разделения основан на использовании свойства сверхтекучести жидкого гелия-4, который может самостоятельно перетечь через вертикальную стенку в соседнюю емкость, оставив после себя только несверхтекучий гелий-3 (см. "Наука и жизнь" № 2, 2004 г.).

Увы, заниматься всем этим придется в безвоздушном пространстве, не "в тепличных" условиях Земли, а на Луне. Придется переселить туда несколько шахтерских городов, что, в сущности, означает колонизацию Луны. Сейчас за безопасностью нескольких космонавтов на околоземной орбите следят сотни специалистов и в любой момент экипаж может вернуться на Землю. Если в космосе окажутся десятки тысяч человек, им придется жить в условиях вакуума самостоятельно, без детального присмотра с Земли, и обеспечивать себя водой, воздухом, топливом, основными строительными материалами. Впрочем, водорода, кислорода и металлов на Луне достаточно. Многие из них могут быть получены как побочный продукт добычи гелия. Тогда, вероятно, гелий-3 сможет стать выгодным товаром для торговли с Землей. Но поскольку люди, находящиеся в столь сложных условиях, будут нуждаться в гораздо большем количестве энергии, чем земляне, лунные запасы гелия-3 могут показаться нашим потомкам не такими уж безграничными и привлекательными.

Кстати, на этот случай есть и альтернативное решение. Если уж инженеры и физики найдут способ справиться с удержанием в десять раз более горячей, чем нужно для современного токамака, гелиевой плазмы (задача, кажущаяся сейчас совершенно фантастической), то, увеличив температуру еще всего лишь в два раза, мы "зажжем" и реакцию синтеза с участием протонов и бора. Тогда все проблемы с топливом будут решены, причем за гораздо меньшую цену: бора в земной коре больше, чем, например, серебра или золота, он широко используется как добавка в металлургии, электронике, химии. Различных боросодержащих солей горнообогатительные комбинаты выпускают сотни тысяч тонн в год, а если нам не хватит запасов на суше, то в каждой тонне морской воды содержится несколько граммов бора. И тот, у кого в домашней аптечке припасен пузырек борной кислоты, может считать, что у него есть собственный энергетический резерв на будущее.
Кандидат физико-математических наук А. Петрукович.

http://nauka.relis.ru/05/0408/05408012.htm
__________________
The history of Russia is one of glory, and victory, and of sadness.
Ctacbes вне форума   Ответить с цитированием
Ответ


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
велик Schumacher Куплю 5 17.06.2009 19:59
!ГЕЛИЙ! Белый Разное 9 11.02.2009 12:05
велик Crazy Куплю 1 05.08.2008 00:39
велик DRIVER Куплю 1 11.07.2008 01:11
Освоение космоса... Мильтен Наука, религия, философия 9 01.03.2005 12:09


Текущее время: 18:01. Часовой пояс GMT +7.


Powered by vBulletin® Version 3.8.4 Patch Level 5
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум открыт в июле 2004 г.
Кошки и котята Красноярска и Сибири Живой Мир Сибири