forum.rastrnet.ru  

Вернуться   forum.rastrnet.ru > Культура, Развлечения, Хобби > Наука, религия, философия

 Сообщения за день       Добавить альбом       Поиск      Правила форума  


Ответ
 
Опции темы Опции просмотра
Старый 18.05.2009, 16:47   #41
Кеша
Такой Кеша
 
Аватар для Кеша
 
Регистрация: 01.08.2006
Сообщений: 6,007
По умолчанию

самое интересное, что у вас и всяких ученых докторов, нет никакого опыта и доказательств обратного

а тыкать в псевдонаучные книжки и поддерживать авторитет, можно только с психикой тупого жЫвотнАго
__________________
кто не верит в холокост — сволочи и суки!
это ж было для людей, и даже для науки
Кеша вне форума   Ответить с цитированием
Старый 18.05.2009, 16:53   #42
avan
Новичок
 
Аватар для avan
 
Регистрация: 16.03.2005
Сообщений: 660
По умолчанию

Цитата:
Сообщение от Кеша Посмотреть сообщение
самое интересное, что у вас и всяких ученых докторов, нет никакого опыта и доказательств обратного

Это как? Мужчины наследуют генитический материал от всех детей матери?
avan вне форума   Ответить с цитированием
Старый 18.05.2009, 23:04   #43
серёжа
флудер
 
Аватар для серёжа
 
Регистрация: 19.07.2004
Сообщений: 3,504
По умолчанию

Дорогие друзья, телегония не воспроизводится опытным путём. Еще в начале прошлого века или в конце позапрошлого, ученый, у которого полосатый жеребенок родился, якобы от зебры, так и не смог воспроизвести позднее данный опыт. Он так и написал в итоге, только никто не использовал его выводы, а все тупо орали про полосатую лошадь. И собачники тоже в туже степь попёрли.

Вообще эта теория очень удобна для поддержания всяких нацистких и националистических идей. Поэтому она и не умерла до сих пор.

Включите мозг, хоть ради интереса погуглите, почитайте доводы настоящих учёных.
__________________

Последний раз редактировалось squirrel; 19.05.2009 в 18:38.
серёжа вне форума   Ответить с цитированием
Старый 18.05.2009, 23:16   #44
Оттава
Новичок
 
Аватар для Оттава
 
Регистрация: 19.02.2008
Сообщений: 215
По умолчанию

Цитата:
Сообщение от серёжа Посмотреть сообщение
ученый, у которого полосатый жеребенок родился, якобы от зебры, так и не смог воспроизвести позднее данный опыт.
Включите мозг, хоть ради интереса погуглите, почитайте доводы настоящих учёных. Просто смешно.
Да уж Ижуля..если ученый смог родить жеребенка, якобы от зебры.. то уж почто теория телегония, не способна на жизнь? ))) Раз "собаячьи судьи" снимают с разведения "порченных" сук, то что-то в этом есть..(имхо)
__________________
ЧАСТО НУЖНЕЕ СКРЫВАТЬ ПРЕЗРЕНИЕ, ЧЕМ ЗЛОБУ: ОБИДЫ ЕЩЕ МОГУТ БЫТЬ ЗАБЫТЫ, НО ПРЕЗРЕНИЕ НИКОГДА НЕ ПРОЩАЕТСЯ.Филипп Дормер Стенхоп ЧЕСТЕРФИЛД
Оттава вне форума   Ответить с цитированием
Старый 20.05.2009, 11:27   #45
Демон
汉学家
 
Аватар для Демон
 
Регистрация: 30.10.2007
Сообщений: 2,928
По умолчанию

В США из-за этой теории уже сколько лет ведут пропоганду "никакого секса д освадьбы". У нас над этим не задумаются.
Тут никакого нацизма и национализма нету. Просто чтоб люди опомнились, что секс это не одно из удовольствий, а нечто большее + вспомнили об ответсвенности.
__________________
Люди встречаются,
Люди влюбляются...
Женя овца!

Последний раз редактировалось squirrel; 21.05.2009 в 00:26.
Демон вне форума   Ответить с цитированием
Старый 22.06.2009, 15:35   #46
Велес
Новичок
 
Регистрация: 15.05.2009
Сообщений: 27
По умолчанию

Да уж написали бы прямо:
Не принимаю понятия Телегония потому что, хочу вести беспорядочный образжизни, собирать болячки, бухать и т.п.
По поводу всяких опытов с подобными, так в России они были, занимался какойто Китаец, кстати вроде опять теперь будет тем же занимать в России
А писать ого что этого не может быть, потому что не может быть вообще, несколько не правильно.
Честнее написать - не знаю, сам не сталкивался, а так слишком много чего бывает, что воспринмается как сказка.
Лампочка то в доме горит, а почему?
Что есть электрический ток? Физики только предполагают, но пользуемся все,
Порченых собак и кобелей (кстати тоже) снимают, увы но факт, а причина - телегония, обращайтесь к собаководам, расскажут подробнее.
Велес вне форума   Ответить с цитированием
Старый 23.06.2009, 19:54   #47
santozzz
Профи
 
Аватар для santozzz
 
Регистрация: 01.10.2004
Сообщений: 1,355
По умолчанию

И че,что ты сталкивался с собачниками?:-) У приверженцев нету ни одной теории как работает этот механизм, в том числе у собаководов и коневодов.
Если прочитать учебник биологии,где написано про основы генетики, то там будет все подробно описано,как происходит процесс передачи генетической информации.

Давайте чтобы не быть голословным,ты напишешь как передается генетический материал матери?
Как известно, переносчиком ген.материала у мужчины является сперматозоид,который,не будучи вообще побывавшим в женском теле, неможет никуда этот материал передать))
Так вот,каким образом,эти миллионы сперматозоидов передали будущему ребенку свои гены?)
santozzz вне форума   Ответить с цитированием
Старый 23.06.2009, 20:11   #48
Кеша
Такой Кеша
 
Аватар для Кеша
 
Регистрация: 01.08.2006
Сообщений: 6,007
По умолчанию

Цитата:
Сообщение от santozzz Посмотреть сообщение
Если прочитать учебник биологии,где написано про основы генетики, то там будет все подробно описано,как происходит процесс передачи генетической информации.
Давайте чтобы не быть голословным,
давайте, чтобы не быть голословным, вы докажете истинность этих основ, со всех известных позиций
__________________
кто не верит в холокост — сволочи и суки!
это ж было для людей, и даже для науки
Кеша вне форума   Ответить с цитированием
Старый 23.06.2009, 20:38   #49
Forbrak
Рид онли
 
Аватар для Forbrak
 
Регистрация: 05.07.2006
Сообщений: 1,307
По умолчанию

http://krasview.ru/watch/2b1c3a0ef16587c
__________________
Forbrak вне форума   Ответить с цитированием
Старый 23.06.2009, 20:46   #50
santozzz
Профи
 
Аватар для santozzz
 
Регистрация: 01.10.2004
Сообщений: 1,355
По умолчанию

Как известно, переносчиком ген.материала у мужчины является сперматозоид,который,не будучи вообще побывавшим в женском теле, неможет никуда этот материал передать))
Так вот,каким образом,эти миллионы сперматозоидов передали будущему ребенку свои гены?)
Спойлер про Законы Менделя:
Законы Менделя

Материал из Википедии — свободной энциклопедии

Законы Менделя — набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона, хотя «первый закон» не был открыт Менделем, а «гипотеза чистоты гамет» из всех открытых им закономерностей имеет наиболее общее значение и в наибольшей степени заслуживает названия «закона».Содержание [убрать]
1 История
2 Методы и ход работы Менделя
3 Закон единообразия гибридов первого поколения
3.1 Кодоминирование и неполное доминирование
4 Закон расщепления признаков
4.1 Определение
4.2 Объяснение
5 Закон независимого наследования признаков
5.1 Определение
5.2 Объяснение
6 Основные положения теории наследственности Менделя
7 Условия выполнения законов Менделя
7.1 Условия выполнения закона расщепления при моногибридном скрещивании
7.2 Условия выполнения закона независимого наследования
7.3 Условия выполнения закона чистоты гамет
8 См. также
9 Ссылки



История

Грегор Мендель (1822—1884) открыл основные законы наследования признаков в результате исследований, проведенных на горохе (Рisum sativum) в 1856—1863 г.г. Свои результаты он доложил в 1865 году и опубликовал в 1866 году.

Следует отметить, что сам Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

К середине XIX века было открыто явление доминантности (О.Саржэ, Ш.Ноден и др.). Часто все гибриды первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует). Они же показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»). Было также показано (Дж. Госс и др.), что среди гибридов второго поколения с доминантным признаком встречаются разные — дающие и не дающие расщепление при самоопылении. Однако никто из этих исследователей не смог дать своим наблюдениям теоретическое обоснование.

Главной заслугой Менделя было создание теории наследственности, которая объясняла изученные им закономерности наследования.


Методы и ход работы Менделя
Мендель изучал, как наследуются отдельные признаки.
Мендель выбрал из всех признаков только альтернативные — такие, которые имели у его сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования.
Мендель спланировал и провел масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученных гибридов скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20.000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить искусственную гибридизацию.
Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.


Закон единообразия гибридов первого поколения

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 — белые (ww).

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

При скрещивании организмов, различающихся по одной паре контрастных признаков, за которые отвечают аллели одного гена, первое поколение гибридов единообразно по фенотипу и генотипу. По фенотипу все гибриды первого поколения характеризуются доминантным признаком, по генотипу всё первое поколение гибридов гетерозиготное

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака — на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с желтыми и зелеными семенами, у всех потомков семена были желтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный), всегда подавлял другой (рецессивный).


Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования. Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот.

При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно). Типичный пример кодоминирования — наследование групп крови системы АВО у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: «Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)».


Закон расщепления признаков


Определение

Закон расщепления, или второй закон Менделя.

Скрещивание организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание. Закон расщепления: при моногибридном скрещивании во втором поколении гибридов наблюдается расщепление по фенотипу в соотношении 3:1 : около 3/4 гибридов второго поколения имеют доминантный признак, около 1/4 — рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть — рецессивный, называется расщеплением. Следовательно, расщепление — это распределение доминантных и рецессивных признаков среди потомства в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении


Объяснение

Закон чистоты гамет: в каждую гамету попадает только один аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора — доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки — гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически «чистые» гаметы образуются следующим образом:

На схеме показан мейоз клетки с диплоидным набором 2n=4 (две пары гомологичных хромосом). Отцовские и материнские хромосомы обозначены разным цветом.

В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления попадают в разные клетки. При слиянии мужских и женских гамет получается зигота с диплоидным набором хромосом. При этом половину хромосом зигота получает от отцовского организма, половину — от материнского. По данной паре хромосом (и данной паре аллелей) образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом. В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25 % генотипов будут гомозиготными доминантными, 50 % — гетерозиготными, 25 % — гомозиготными рецессивными, то есть устанавливается отношение 1АА:2Аа:1аа (расщепление по генотипу 1:2:1). Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 (3/4 особей с доминантным признаком, 1/4 особей с рецессивным). Таким образом, при моногибридном скрещивании цитологическая основа расщепления признаков — расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.


Закон независимого наследования признаков
Основная статья: Закон независимого наследования признаков


Определение

Закон независимого наследования (третий закон Менделя) — каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9/16 были с пурпурными цветами и желтыми горошинами, 3/16 с белыми цветами и желтыми горошинами, 3/16 с пурпурными цветами и зелёными горошинами, 1/16 с белыми цветами и зелёными горошинами.


Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось. что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).


Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:
За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы — гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один

из них получен от отца, другой — от матери.
Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).


Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.


Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:
Изучается большое число скрещиваний (большое число потомков).
Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).
Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.
Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.


Условия выполнения закона независимого наследования
Все условия, необходимые для выполнения закона расщепления.
Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).


Условия выполнения закона чистоты гамет
Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Спойлер про Теория наследственности:

Материал из Википедии — свободной энциклопедии
Хромосомная теория наследственности[1] - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Хромосомная теория наследственности возникла в начале 20 в. на основе клеточной теории и использования для изучения наследственных свойств организмов гибридологического анализа.Содержание [убрать]
1 Формирование хромосомной теории
2 Генетика пола
3 Определение пола
4 Наследование признаков, сцепленных с полом
5 Сцепленное наследование
6 Понятие о генетической карте
7 Основные положения хромосомной теории наследственности
8 Источники
9 Примечания


[править]
Формирование хромосомной теории

В 1902-1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга выявили параллелизм в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Эти наблюдения послужили основой для предположения, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911—1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Формированию хромосомной теории способствовали данные, полученные при изучении генетики пола, когда были установлены различия в наборе хромосом у организмов различных полов.

[править]
Генетика пола

Пол, как и любой другой признак организма, наследственно детерминирован. Важнейшая роль в генетической детерминации пола и в поддержании закономерного соотношения полов принадлежит хромосомному аппарату.

У раздельнополых организмов (животных и двудомных растении) соотношение полов обычно составляет 1:1, то есть мужские и женские особи встречаются одинаково часто. Это соотношение совпадает с расщеплением в анализирующем скрещивании, когда одна из скрещиваемых форм является гетерозиготной (Аа), а другая — гомозиготной по рецессивным аллелям (аа). В потомстве в этом случае наблюдается расщепление в отношении 1Аа:1аа. Если пол наследуется по такому же принципу, то вполне логично было бы предположить, что один пол должен быть гомозиготным, а другой — гетерозиготным. Тогда расщепление по полу должно быть в каждом поколении равным 1:1, что и наблюдается в действительности.

При изучении хромосомных наборов самцов и самок ряда животных между ними были обнаружены некоторые различия. Как у мужских, так и у женских особей во всех клетках имеются пары одинаковых (гомологичных) хромосом, но по одной паре хромосом они различаются. Так, у самки дрозофилы имеются две палочковидные хромосомы, а у самца — одна такая же палочковидная, а вторая, парная первой, — изогнутая. Такие хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми хромосомами. Те из них, которые являются парными у одного из полов, называют X-хромосомами (например, у дрозофилы и млекопитающих) или Z-хромосомами (например, у птиц). Непарная половая хромосома, имеющаяся у особей только одного пола, была названа У-хромосомой (у дрозофилы и млекопитающих) или W-хромосомой (у птиц). Хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами. Следовательно, у дрозофилы особи обоих полов имеют по шесть одинаковых аутосом плюс две половые хромосомы (ХХ у самок и XY у самцов).

Пол, имеющий различные половые хромосомы (X и У), образует гаметы двух типов (половина с X-хромосомой и половина с У-хромосомой), т.е., является гетерогаметным, а пол, содержащий в каждой клетке одинаковые половые хромосомы (Х-хромосомы), — гомогаметным.

Открытие половых хромосом и установление их роли в определении пола послужило важным доводом в пользу того, что хромосомы определяют признаки организма.

[править]
Определение пола
Основная статья: Определение пола

От чего же зависит рождение мужских и женских особей? Рассмотрим это на примере определения пола у дрозофилы. В ходе мейоза у самок образуется один тип гамет, содержащий гаплоидный набор аутосом и одну Х-хромосому. Самцы образуют два типа гамет, половина из которых содержит три аутосомы и одну Х-хромосому (ЗА+Х), а половина — три аутосомы и одну У-хромосому (ЗА+У). При оплодотворении яйцеклеток (ЗА+Х) сперматозоидами с Х-хромосомами будут формироваться самки (6А+ХХ), а от слияния яйцеклеток со сперматозоидами, несущими У-хромосому, — самцы (6A+XY). Поскольку число мужских гамет с Х- и У-хромосомами одинаково, то и количество самцов и самок тоже одинаково. В данном случае пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.

Сходный способ определения пола (XY-тип) присущ всем млекопитающим, в том числе и человеку, клетки которого содержат 44 аутосомы и две X-хромосомы у женщин либо XY-хромосомы у мужчин.

Таким образом, XY-тип определения пола, или тип дрозофилы и человека, — самый распространенный способ определения пола, характерный для большинства позвоночных и некоторых беспозвоночных. Х0-тип встречается у большинства прямокрылых, клопов, жуков, пауков, у которых Y-хромосомы нет вовсе, так что самец имеет генотип Х0, а самка — XX.

У всех птиц, большинства бабочек и некоторых пресмыкающихся самцы являются гомогаметным полом, а самки —- гетерогаметным (типа XY или типа ХО). Половые хромосомы у этих видов обозначают буквами Z и W, чтобы выделить таким образом данный способ определения пола; при этом набор хромосом самцов обозначают символом ZZ, а самки — символом ZW или Z0.

Доказательства того, что половые хромосомы определяют пол организма, были получены при изучении нерасхождения половых хромосом у дрозофилы. Если в одну из гамет попадут обе половые хромосом, а в другую — ни одной, то при слиянии таких гамет с нормальными могут получиться особи с набором половых хромосом ХХХ, ХО, ХХУ и др. Выяснилось, что у дрозофилы особи с набором ХО — самцы, а с набором ХХУ — самки (у человека — наоборот). Особи с набором ХХХ имеют гипертрофированные признаки женского пола (сверхсамки). (Особи со всеми этими хромосомными аберрациями у дрозофилы стерильны). В дальнейшем было доказано, что у дрозофилы пол определяется соотношением (балансом) между числом Х-хромосом и числом наборов аутосом.

[править]
Наследование признаков, сцепленных с полом

В том случае, когда гены, контролирующие формирование того или иного признака, локализованы в аутосомах, наследование осуществляется независимо от того, кто из родителей (мать или отец) является носителем изучаемого признака. Если же гены находятся в половых хромосомах, характер наследования признаков резко изменяется. Например, у дрозофилы гены, локализованные в Х-хромосоме, как правило, не имеют аллелей в У-хромосоме. По этой причине рецессивные гены в Х-хромосоме гетерогаметного пола практически всегда проявляются, будучи в единственном числе.

Признаки, гены которых локализованы в половых хромосомах, называются признаками, сцепленными с полом. Явление наследования, сцепленного с полом, было открыто Т. Морганом у дрозофилы.

Х- и У-хромосомы у человека имеют гомологичный (псевдоаутосомный) участок, где локализованы гены, наследование которых не отличается от наследования аутосомных генов.

Помимо гомологичных участков, Х- и У-хромосомы имеют негомологичные участки. Негомологичный участок У-хромосомы, кроме генов, определяющих мужской пол, содержит гены перепонок между пальцами ног и волосатых ушей у человека. Патологические признаки, сцепленные с негомологичным участком У-хромосомы, передаются всем сыновьям, поскольку они получают от отца У-хромосому.

Негомологичный участок Х-хромосомы содержит в своем составе ряд важных для жизнедеятельности организмов генов. Поскольку у гетерогаметного пола (ХУ) Х-хромосома представлена в единственном числе, то признаки, определяемые генами негомологичного участка Х-хромосомы, будут проявляться даже в том случае, если они рецессивны. Такое состояние генов называется гемизиготным. Примером такого рода Х-сцепленных рецессивных признаков у человека являются гемофилия, мышечная дистрофия Дюшена, атрофия зрительного нерва, дальтонизм (цветовая слепота) и др.

Гемофилия — это наследственная болезнь, при которой кровь теряет способность свертываться. Ранение, даже царапина или ушиб, могут вызвать обильные наружные или внутренние кровотечения, которые нередко заканчиваются смертью. Это заболевание встречается, за редким исключением, только у мужчин. Было установлено, что обе наиболее распространенные формы гемофилии (гемофилия А и гемофилия В) обусловлена рецессивными генами, локализованными в Х-хромосоме. Гетерозиготные по данным генам женщины (носительницы) обладают нормальной или несколько пониженной свертываемостью крови.

Фенотипическое проявление гемофилии у девочек будет наблюдаться в том случае, если мать девочки является носительницей гена гемофилии, а отец — гемофиликом. Подобная закономерность наследования характерна и для других рецессивных, сцепленных с полом признаков.

[править]
Сцепленное наследование

Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом. Например, у кукурузы до эры молеулярной биологии было изучено более 500 генов, у мухи дрозофилы — более 1 тыс., а у человека — около 2 тыс. генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. То, что число генов у высших организмов составляет несоклько тысяч, было ясно уже У. Сэттону в начале XX века. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному числу хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены. (У особей гетерогаметного пола, например, у самцов млекопитающих, групп сцепления на самом деле на одну больше, так как Х- и У-хромосомы содержат разные гены и представляют собой две разные группы сцепления. Таким образом, у женщин 23 группы сцепления, а у мужчин - 24).

Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигетерозиготная особь образует четыре типа гамет (АВ, Аb, аВ и аb) в равных количествах, то при сцепленном наследовании (в отсутствие кроссинговера) такая же дигетерозигота образует только два типа гамет: (АВ и аb) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме обычных (некроссоверных) гамет возникают и другие (кроссоверные) гаметы с новыми комбинациями генов - Аb и аВ, отличающимися от комбинаций генов в хромосомах родителя. Причиной возникновения таких гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.

Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная частота кроссинговера не превышает 50 %. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.

Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

[править]
Понятие о генетической карте

Т. Морган и его сотрудники К. Бриджес, А. Г. Стертевант и Г. Дж. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом.

Возможность подобного картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике. Так, создание штаммов микроорганизмов, способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии, которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека также могут оказаться полезными в здравоохранении и медицине. Знания о локализации гена в определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека. Уже теперь появилась возможность для генной терапии, то есть для исправления структуры или функции генов.

Сравнение генетических карт разных видов живых организмов способствует также пониманию эволюционного процесса.

[править]
Основные положения хромосомной теории наследственности

Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:
Гены локализованы в хромосомах. При этом различные хромосомы содержат неодинаковое число генов. Кроме того, набор генов каждой из негомологичных хромосом уникален.
Аллельные гены занимают одинаковые локусы в гомологичных хромосомах.
Гены расположены в хромосоме в линейной последовательности.
Гены одной хромосомы образуют группу сцепления, то есть наследуются преимущественно сцепленно (совместно), благодаря чему происходит сцепленное наследование некоторых признаков. Число групп сцепления равно гаплоидному числу хромосом данного вида (у гомогаметного пола) или больше на 1 (у гетерогаметного пола).
Сцепление нарушается в результате кроссинговера, частота которого прямо пропорциональна расстоянию между генами в хромосоме (поэтому сила сцепления находится в обратной зависимости от расстояния между генами).
Каждый биологический вид характеризуется определенным набором хромосом — кариотипом.
santozzz вне форума   Ответить с цитированием
Ответ


Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Материал под форму. Altair Разное 6 16.02.2009 00:20
ГМО - Генетически Модифицированные Организмы. Кисоня Здоровье 27 23.11.2008 00:05
вопрос по матери Serega Техподдержка 4 19.02.2008 21:21
Ребенок Santus Юридический 7 06.01.2008 12:30
Трудный ребенок 1, 2 Loki В поисках Фильма 0 02.02.2006 12:16


Текущее время: 02:56. Часовой пояс GMT +7.


Powered by vBulletin® Version 3.8.4 Patch Level 5
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. Перевод: zCarot
Форум открыт в июле 2004 г.
Кошки и котята Красноярска и Сибири Живой Мир Сибири